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15CPPM, IN2P3-CNRS, Université de la Méditerranée, Marseille, France
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We present a measurement of the shape of the Z/γ∗ boson transverse momentum (qT ) distribution
in pp̄ → Z/γ∗ → e+e− + X events at a center-of-mass energy of 1.96 TeV using 0.98 fb−1 of data
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collected with the D0 detector at the Fermilab Tevatron collider. The data are found to be consistent
with the resummation prediction at low qT , but above the perturbative QCD calculation in the
region of qT > 30 GeV/c. Using events with qT < 30 GeV/c, we extract the value of g2, one of the
non-perturbative parameters for the resummation calculation. Data at large boson rapidity y are
compared with the prediction of resummation and with alternative models that employ a resummed
form factor with modifications in the small Bjorken x region of the proton wave function.

PACS numbers: 13.60.Hb, 13.38.Dg, 13.85.Qk, 13.38.Bx

A complete understanding of weak vector boson pro-
duction is essential for maximizing the sensitivity to new
physics at hadron colliders through precision measure-
ments of the W boson mass, detailed studies of top quark
production, and searches for production of the Higgs bo-
son and other phenomena beyond the standard model.
Studies of the Z/γ∗ boson production play a particu-
larly valuable role in that its kinematics can be precisely
determined through measurement of its leptonic decays.
Throughout this Letter, we use the notation “Z boson”
to mean “Z/γ∗ boson”, unless specified otherwise.

Z boson production also serves as an ideal test-
ing ground for predictions of quantum chromodynam-
ics (QCD), since the boson’s transverse momentum, qT ,
can be measured over a wide range of values and can be
correlated with its rapidity. At large qT (approximately
greater than 30 GeV/c), the radiation of a single par-
ton with large transverse momentum dominates the cross
section, and fixed-order perturbative QCD (pQCD) cal-
culations [1], currently available at next-to-next-to lead-
ing order (NNLO) [2], should yield reliable predictions.
At lower qT , multiple soft gluon emission can not be
neglected, and the fixed-order perturbation calculation
no longer gives accurate results. A soft gluon resumma-
tion technique developed by Collins, Soper, and Sterman
(CSS) [3] gives reliable predictions in the low-qT region.
A prescription has been proposed [4] for matching the
low- and high-qT regions in order to provide a continu-
ous prediction for all values of qT . The CSS resummation
formalism allows the inclusion of contributions from large
logarithms of the form lnn(q2

T /Q2) to all orders of per-
turbation theory in an effective resummed form factor,
where Q2 represents the invariant mass corresponding
to the four-momentum transfer. The CSS resummation
can be done either in impact parameter (b) space or in
transverse momentum (qT ) space. In the case of b-space
resummation, this form factor can be parameterized with
the following non-perturbative function first introduced
by Brock, Landry, Nadolsky and Yuan (BLNY) [5]:

SNP (b,Q2) =
[
g1 + g2 ln

(
Q

2Q0

)
+ g1g3 ln(100xixj)

]
b2,

(1)
where xi and xj are the fractions of the incident hadron
momenta carried by the colliding partons, Q0 is a scale
typical of the onset of non-perturbative effects, and g1,
g2 and g3 are phenomenological non-perturbative param-
eters that must be obtained from fits to the data. The

Z boson qT distribution at the Fermilab Tevatron is by
far most sensitive to the value of g2 and quite insensitive
to the value of g3. Thus a measurement of the Z boson
qT spectrum can be used to test this formalism and to
determine the value of g2.

Recent studies of data from deep inelastic scattering
(DIS) experiments [6, 7] indicate that the resummed form
factor in the above equation may need to be modified for
processes involving a small-x parton in the initial state.
Ref. [8] indicates how such a modification would influence
the qT distributions of vector and Higgs bosons produced
in hadronic collisions. A wider transverse momentum
distribution is predicted for Z bosons with large rapid-
ity (called “small-x broadening”). Z bosons produced at
the Tevatron in the rapidity range 2 < |y| < 3 probe pro-
cesses involving a parton with Bjorken x between 0.002
and 0.006, and can be used as a test of the modified
resummed form factor at small x.

Z boson qT distributions have been published previ-
ously by the CDF [9] and D0 [10] collaborations using
about 100 pb−1 of data at a center-of-mass energy of
1.8 TeV. In this Letter, we report a new measurement
with larger statistics and improved precision. This mea-
surement is also the first to present a qT distribution
for large-rapidity Z bosons. The data sample used in
this measurement was collected using a set of inclusive
single-electron triggers with the D0 detector [11] at the
Fermilab Tevatron collider at a center-of-mass energy of
1.96 TeV; the integrated luminosity of the data sample
is 980 ± 60 pb−1 [12]. The D0 detector includes a cen-
tral tracking system, composed of a silicon microstrip
tracker and a central fiber tracker, both located within a
2 T superconducting solenoidal magnet and optimized for
tracking and vertexing capabilities at pseudorapidities of
|η| < 3 and |η| < 2.5 respectively (η = − ln[tan(θ/2)],
where θ is the polar angle with respect to the proton di-
rection). Three liquid argon and uranium calorimeters
provide coverage out to |η| ≈ 4.2: a central section with
coverage of |η| < 1.1 and two endcap calorimeters with
an approximate coverage of 1.5 < |η| < 4.2 for jets and
1.5 < |η| < 3.2 for electrons. A muon system surrounds
the calorimetry and consists of three layers of scintilla-
tors and drift tubes and 1.8 T iron toroids with coverage
of |η| < 2.

Our selection criteria for candidate Z bosons require
two isolated electromagnetic (EM) clusters that have a
shower shape consistent with that of an electron and
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are away from the module boundaries of the calorime-
ters. Electron candidates are required to have transverse
momentum greater than 25 GeV/c. The electron pairs
must have a reconstructed invariant mass 70 < M(ee) <
110 GeV/c2. If an event has both its candidate electrons
in the central calorimeter (CC events), each electron must
be spatially matched to a reconstructed track. Because
the tracking efficiency decreases with rapidity in the end-
cap region, events with one or two endcap calorimeter
electron candidates (CE and EE events, respectively) are
required to have at least one electron with a matching
track. After these requirements, 23,959 CC, 30,344 CE,
and 9,598 EE events are selected; 5412 of these have a
reconstructed Z boson with |y| > 2.

Electron identification efficiencies are measured using
a combination of data and a geant-based [13] simula-
tion of the D0 detector. The electron identification ef-
ficiencies are measured from Z events and are parame-
terized in terms of the electron transverse energy and,
for some variables, the vertex position along the beam
axis or electron incident angle. The dependence of the
overall selection efficiency on the Z boson qT is param-
eterized from the geant simulation. A measurement of
this shape from the data agrees well with the simulation
within statistical uncertainties.

The dominant backgrounds are from photon plus jet
events and di-jet events, with photons and jets misiden-
tified as electrons. The kinematic properties of these
events are obtained from events that satisfy most of the
Z selection criteria, but fail the electron shower shape
requirement. The normalization of the background is
obtained by fitting to a sum of a signal shape obtained
from a parameterized simulation of the detector response
and the invariant mass distribution from the background
sample to the invariant mass distribution of the data
sample. The background fractions are (1.30±0.14)%,
(8.55±0.26)%, and (4.71±0.30)% for CC, CE, and EE
events respectively. Other backgrounds are negligible.

The data are corrected for acceptances within a range
of generated Z masses of 40 to 200 GeV/c2, and for se-
lection efficiencies using a parameterized simulation. We
use ResBos [14] as the event generator which incorpo-
rates the resummation calculation in b-space using the
BLNY parameterization for low qT and a NLO pQCD
calculation for high qT . We use photos [15] to simulate
the effects of final state photon radiation. The overall
acceptance times efficiency falls slowly from a value of
0.27 at low qT to a minimum of 0.19 at qT = 40 GeV/c
and slowly increases for larger qT .

The measured spectrum is further corrected for de-
tector resolution effects using the run (Regularized Un-
folding) program [16] to obtain the true differential cross
section. Its performance was verified by comparing the
true and unfolded spectrum generated using pseudo-
experiments. The measured Z qT resolution is about 2
GeV/c; the bin width we choose is 2.5 GeV/c for qT < 30

GeV/c. The typical correlation between adjacent bins is
around 30%. Due to limited statistics, the chosen bin
width is 10 GeV/c for 30 < qT < 100 GeV/c and 40
GeV/c for 100 < qT < 260 GeV/c.

Systematic uncertainties on the unfolded qT spectrum
arise from uncertainties on the electron energy calibra-
tion, the electron energy resolution, the dependence of
the overall selection efficiency on qT , and the effect of
parton distribution functions (PDFs) on the acceptance.
The uncertainties on the unfolded spectrum are esti-
mated from the resulting change when the smearing pa-
rameters are varied within their uncertainties. CTEQ
6.1M is used as the default PDF. Uncertainties due to
the PDFs are estimated using the procedure described in
Ref. [17]. The uncertainty due to the choice of unfold-
ing parameters in the run program is also estimated and
included in the final systematic uncertainty.

The final results in the qT < 30 GeV/c range, with
statistical and systematic uncertainties added in quadra-
ture, are shown in Fig. 1 for the inclusive sample and for
the sample with |y| > 2. Each data point is plotted at
the average value of the expected distribution over the
bin [18]. For the theoretical calculation, we use ResBos
with published values of the non-perturbative parame-
ters [5]. Good agreement between data and the ResBos
prediction is observed for all rapidity ranges, which in-
dicates that the BLNY parameterization works well for
the low qT region.

Z boson events produced at large rapidities (|y| > 2)
are also used to test the small-x prediction. We compare
data with the theoretical predictions with and without
the form factor as modified from studies of small-x DIS
data [8]. All curves are normalized to 1 for qT < 30
GeV/c. The default values for the parameters g1, g2,
and g3 [5] obtained from large-x data are used. The
χ2/d.o.f. between the data and the ResBos calculation
using the default parameters is 0.8/1 for qT < 5 GeV/c
and 11.1/11 for qT < 30 GeV/c, while that for the modi-
fied calculation is 5.7/1 for qT < 5 GeV/c and 31.9/11 for
qT < 30 GeV/c. It remains to be seen if retuning of the
non-perturbative parameters could improve the agree-
ment for the modified calculations.

Figure 2 shows the measured differential cross sec-
tion in the range qT < 260 GeV/c compared to (1) the
ResBos calculation with its default parameters [5], (2)
ResBos with a NLO to NNLO K-factor by Arnold and
Reno [19] incorporated into ResBos by its authors, (3)
a pQCD calculation at NNLO [2] using the MRST 2001
NNLO PDF set [20] divided by the NNLO calculation of
the total cross section [21], and (4) the NNLO calcula-
tion but rescaled to the data at qT = 30 GeV/c. The
agreement between data and ResBos, with or without
the K-factor, is good for values of qT less than about
30 GeV/c. At higher values of qT , the data are not in
agreement with the ResBos calculation. The ResBos
calculation uses the result from the resummation calcula-
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tion at low values of qT , the purely perturbative result at
high values of qT , and a matching prescription at interme-
diate values. The data agree better with the NNLO cal-
culation and ResBos prediction with the Arnold-Reno
K-factor, but agrees best when the NNLO results are
rescaled by a factor of 1.25 so that they match the data at
qT = 30 GeV/c. This indicates that the shape from these
calculations agrees with the data, and that the source of
the discrepancy is in the normalization. Table I summa-
rizes the measured values for each qT bin together with
statistical and systematic uncertainties.

The CSS model parameter most sensitive to the shape
at low qT (qT < 30 GeV/c) is g2. In a fit, we fix other
phenomenological parameters to the values obtained in
Ref. [5] and only vary g2. A minimum χ2/d.o.f. of
9/11 between the model and the inclusive data for qT <
30 GeV/c is found when g2 = 0.77± 0.06 (GeV/c)2.

〈qT 〉 (GeV/c) 1/σ × dσ/dqT (GeV/c)−1

1.1 (5.32± 0.13± 0.24)× 10−2

4.0 (8.08± 0.12± 0.19)× 10−2

6.2 (6.33± 0.11± 0.14)× 10−2

8.7 (4.43± 0.09± 0.11)× 10−2

11.3 (3.15± 0.08± 0.08)× 10−2

13.7 (2.46± 0.07± 0.06)× 10−2

16.2 (1.86± 0.06± 0.05)× 10−2

18.7 (1.42± 0.05± 0.05)× 10−2

21.3 (1.09± 0.04± 0.03)× 10−2

23.7 (9.40± 0.40± 0.20)× 10−3

26.4 (6.90± 0.30± 0.20)× 10−3

28.5 (5.50± 0.30± 0.10)× 10−3

34.6 (3.90± 0.10± 0.10)× 10−3

44.6 (2.10± 0.07± 0.06)× 10−3

54.6 (1.10± 0.05± 0.03)× 10−3

64.6 (7.30± 0.40± 0.20)× 10−4

73.4 (4.20± 0.30± 0.20)× 10−4

85.4 (2.50± 0.20± 0.10)× 10−4

95.1 (1.60± 0.17± 0.08)× 10−4

117.5 (6.00± 0.50± 0.30)× 10−5

157.5 (1.10± 0.20± 0.07)× 10−5

195.5 (3.00± 1.00± 0.30)× 10−6

245.5 (7.10± 6.10± 0.60)× 10−7

TABLE I: The normalized differential cross section for
Z events produced in bins of qT . The first uncertainty is
statistical and the second is systematic.

In conclusion, we have measured the normalized dif-
ferential spectrum, 1

σ
dσ
dqT

, for Z boson events produced
in pp̄ collisions at a center-of-mass energy of 1.96 TeV
with boson mass 40 < M < 200 GeV/c2 and transverse
momentum qT < 260 GeV/c. This represents the highest
center-of-mass energy measurement of this quantity over
the largest phase space available to date. The overall
uncertainty of this measurement has been reduced com-
pared with the previous measurements. We find that for
qT < 30 GeV/c, the CSS resummation model used in
ResBos describes the data very well at all rapidities.

Our data with |y| > 2 disfavor a variant of this model
that incorporates an additional small-x form factor when
g1, g2, and g3 from large-x data is used. Using the BLNY
parameterization for events with qT < 30 GeV/c, we ob-
tain g2 = 0.77 ± 0.06 (GeV/c)2, which is comparable
with the current world average value [5]. We observe a
disagreement between our data and NNLO calculations,
both those incorporated into ResBos and a stand-alone
calculation, in the region qT > 30 GeV/c, where our dis-
tribution is higher than predicted by a factor of 1.25.
However, the NNLO calculation agrees in shape with our
data when normalized at qT = 30 GeV/c.
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FIG. 1: The normalized differential cross section as a function of qT for (a) the inclusive sample and (b) the sample with
Z boson |y| > 2 with qT < 30 GeV/c. The points are the data, the solid curve is the ResBos prediction, and the dashed line
in (b) is the prediction from the form factor modified after studies of small-x DIS data.
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